How to get pooled p-values on tests done in multiple imputed datasets?

Using Amelia in R, I obtained multiple imputed datasets. After that, I performed a repeated measures test in SPSS. Now, I want to pool test results. I know that I can use Rubin’s rules (implemented through any multiple imputation package in R) to pool means and standard errors, but how do I pool p-values? Is it possible? Is there a function in R to do so?
Thanks in advance.

Answer

Yes, it is possible and, yes, there are R functions that do it. Instead of computing the p-values of the repeated analyses by hand, you can use the package Zelig, which is also referred to in the vignette of the Amelia-package (for a more informative method see my update below). I’ll use an example from the Amelia-vignette to demonstrate this:

library("Amelia")
data(freetrade)
amelia.out <- amelia(freetrade, m = 15, ts = "year", cs = "country")

library("Zelig")
zelig.fit <- zelig(tariff ~ pop + gdp.pc + year + polity, data = amelia.out$imputations, model = "ls", cite = FALSE)
summary(zelig.fit)

This is the corresponding output including p-values:

  Model: ls
  Number of multiply imputed data sets: 15 

Combined results:

Call:
lm(formula = formula, weights = weights, model = F, data = data)

Coefficients:
                Value Std. Error t-stat  p-value
(Intercept)  3.18e+03   7.22e+02   4.41 6.20e-05
pop          3.13e-08   5.59e-09   5.59 4.21e-08
gdp.pc      -2.11e-03   5.53e-04  -3.81 1.64e-04
year        -1.58e+00   3.63e-01  -4.37 7.11e-05
polity       5.52e-01   3.16e-01   1.75 8.41e-02

For combined results from datasets i to j, use summary(x, subset = i:j).
For separate results, use print(summary(x), subset = i:j).

zelig can fit a host of models other than least squares.

To get confidence intervals and degrees of freedom for your estimates you can use mitools:

library("mitools")
imp.data <- imputationList(amelia.out$imputations)
mitools.fit <- MIcombine(with(imp.data, lm(tariff ~ polity + pop + gdp.pc + year)))
mitools.res <- summary(mitools.fit)
mitools.res <- cbind(mitools.res, df = mitools.fit$df)
mitools.res

This will give you confidence intervals and proportion of the total variance that is attributable to the missing data:

              results       se    (lower    upper) missInfo    df
(Intercept)  3.18e+03 7.22e+02  1.73e+03  4.63e+03     57 %  45.9
pop          3.13e-08 5.59e-09  2.03e-08  4.23e-08     19 % 392.1
gdp.pc      -2.11e-03 5.53e-04 -3.20e-03 -1.02e-03     21 % 329.4
year        -1.58e+00 3.63e-01 -2.31e+00 -8.54e-01     57 %  45.9
polity       5.52e-01 3.16e-01 -7.58e-02  1.18e+00     41 %  90.8

Of course you can just combine the interesting results into one object:

combined.results <- merge(mitools.res, zelig.res$coefficients[, c("t-stat", "p-value")], by = "row.names", all.x = TRUE)

Update

After some playing around, I have found a more flexible way to get all necessary information using the mice-package. For this to work, you’ll need to modify the package’s as.mids()-function. Use Gerko’s version posted in my follow-up question:

as.mids2 <- function(data2, .imp=1, .id=2){
  ini <- mice(data2[data2[, .imp] == 0, -c(.imp, .id)], m = max(as.numeric(data2[, .imp])), maxit=0)
  names  <- names(ini$imp)
  if (!is.null(.id)){
    rownames(ini$data) <- data2[data2[, .imp] == 0, .id]
  }
  for (i in 1:length(names)){
    for(m in 1:(max(as.numeric(data2[, .imp])))){
      if(!is.null(ini$imp[[i]])){
        indic <- data2[, .imp] == m & is.na(data2[data2[, .imp]==0, names[i]])
        ini$imp[[names[i]]][m] <- data2[indic, names[i]]
      }
    } 
  }
  return(ini)
}

With this defined, you can go on to analyze the imputed data sets:

library("mice")
imp.data <- do.call("rbind", amelia.out$imputations)
imp.data <- rbind(freetrade, imp.data)
imp.data$.imp <- as.numeric(rep(c(0:15), each = nrow(freetrade)))
mice.data <- as.mids2(imp.data, .imp = ncol(imp.data), .id = NULL)

mice.fit <- with(mice.data, lm(tariff ~ polity + pop + gdp.pc + year))
mice.res <- summary(pool(mice.fit, method = "rubin1987"))

This will give you all results you get using Zelig and mitools and more:

                  est       se     t    df Pr(>|t|)     lo 95     hi 95 nmis   fmi lambda
(Intercept)  3.18e+03 7.22e+02  4.41  45.9 6.20e-05  1.73e+03  4.63e+03   NA 0.571  0.552
pop          3.13e-08 5.59e-09  5.59 392.1 4.21e-08  2.03e-08  4.23e-08    0 0.193  0.189
gdp.pc      -2.11e-03 5.53e-04 -3.81 329.4 1.64e-04 -3.20e-03 -1.02e-03    0 0.211  0.206
year        -1.58e+00 3.63e-01 -4.37  45.9 7.11e-05 -2.31e+00 -8.54e-01    0 0.570  0.552
polity       5.52e-01 3.16e-01  1.75  90.8 8.41e-02 -7.58e-02  1.18e+00    2 0.406  0.393

Note, using pool() you can also calculate p-values with df adjusted for small samples by omitting the method-parameter. What is even better, you can now also calculate R2 and compare nested models:

pool.r.squared(mice.fit)

mice.fit2 <- with(mice.data, lm(tariff ~ polity + pop + gdp.pc))
pool.compare(mice.fit, mice.fit2, method = "Wald")$pvalue

Attribution
Source : Link , Question Author : wisc88 , Answer Author : Community

Leave a Comment