# Linear combination of two dependent multivariate normal random variables

Suppose we have two vectors of random variables, both are normal, i.e., $X \sim N(\mu_X, \Sigma_X)$ and $Y \sim N(\mu_Y, \Sigma_Y)$. We are interested in the distribution of their linear combination $Z = A X + B Y + C$, where $A$ and $B$ are matrices, $C$ is a vector. If $X$ and $Y$ are independent, $Z \sim N(A \mu_X + B \mu_Y + C, A \Sigma_X A^T + B \Sigma_Y B^T)$. The question is in the dependent case, assuming that we know the correlation of any pair $(X_i, Y_i)$. Thank you.

Best wishes,
Ivan

$$\left(\begin{matrix}X\\Y \end{matrix}\right) \sim \mathcal{N}\left[ \left(\begin{matrix}\mu_X\\\mu_Y\end{matrix}\right), \Sigma_{X,Y} \right]$$
(edited: assuming joint normality of $(X,Y)$)
$$AX+BY=\left(\begin{matrix}A& B \end{matrix}\right) \left(\begin{matrix}X\\Y \end{matrix}\right)$$
$$AX+BY+C \sim \mathcal{N}\left[ \left(\begin{matrix}A& B \end{matrix}\right) \left(\begin{matrix}\mu_X\\\mu_Y\end{matrix}\right) + C, \left(\begin{matrix}A & B \end{matrix}\right)\Sigma_{X,Y} \left(\begin{matrix}A^T \\ B^T \end{matrix}\right)\right]$$
$$AX+BY+C \sim \mathcal{N}\left[A\mu_X + B\mu_Y +C, A\Sigma_{XX}A^T+B\Sigma_{XY}^TA^T+A\Sigma_{XY}B^T+B\Sigma_{YY}B^T \right]$$