Today, I was playing around with a small dataset and performed a simple OLS regression which I expected to fail due to perfect multicollinearity. However, it didn’t. This implies that my understanding of multicollinearity is wrong.
My question is: Where am I wrong?
I think that I can show that one of my variables is a linear combination of the others. This should lead to a regressor matrix that has no full rank and thus the coefficients should not be identified.
I generated a small reproducible dataset (code below):
exporter importer flow dist intraUS 1 Canada Canada 996.8677 6.367287 0 2 Florida Canada 995.8219 9.190562 0 3 Texas Canada 1001.6475 4.359063 0 4 Mexico Canada 1002.4371 7.476649 0 5 Canada Florida 1002.8789 5.389223 0 6 Florida Florida 1007.5589 6.779686 1 7 Texas Florida 996.8938 1.570600 1 8 Mexico Florida 1005.6247 5.910133 0 9 Canada Texas 999.9190 7.887672 0 10 Florida Texas 1004.1061 7.187803 1 11 Texas Texas 1004.5949 7.564273 1 12 Mexico Texas 1000.3728 2.021297 0 13 Canada Mexico 1003.0991 5.887743 0 14 Florida Mexico 999.2210 3.058495 0 15 Texas Mexico 997.6092 6.835883 0 16 Mexico Mexico 1006.7934 5.794425 0
Each time exporter and importer are US states, the dummy
intraUS
is1
.Now I perform a regression of (trade)
flow
s onexporter
andimporter
dummies,dist
ance and theintraUS
dummy. Feeding R with the following formulalm(flow ~ dist + exporter + importer + intraUS, data = dat)
returns estimates for all coefficients, no missing values or warnings about singularity:(Intercept) dist exporterFlorida exporterTexas exporterMexico importerFlorida importerTexas importerMexico intraUS1 995.1033157 0.5744661 -1.2340338 -1.8792073 3.7375783 3.0361727 1.3256032 3.3225512 4.2429599
This puzzles me, because the regressor matrix clearly indicates that
intraUS
is a linear combination ofexporterFlorida
,importerFlorida
,exporterTexas
andimporterTexas
:> mmat <- data.frame(model.matrix(lm(flow ~ dist + exporter + importer + intraUS, data = dat))) X.Intercept. dist exporterFlorida exporterTexas exporterMexico importerFlorida importerTexas importerMexico intraUS1 1 1 6.367287 0 0 0 0 0 0 0 2 1 9.190562 1 0 0 0 0 0 0 3 1 4.359063 0 1 0 0 0 0 0 4 1 7.476649 0 0 1 0 0 0 0 5 1 5.389223 0 0 0 1 0 0 0 6 1 6.779686 1 0 0 1 0 0 1 7 1 1.570600 0 1 0 1 0 0 1 8 1 5.910133 0 0 1 1 0 0 0 9 1 7.887672 0 0 0 0 1 0 0 10 1 7.187803 1 0 0 0 1 0 1 11 1 7.564273 0 1 0 0 1 0 1 12 1 2.021297 0 0 1 0 1 0 0 13 1 5.887743 0 0 0 0 0 1 0 14 1 3.058495 1 0 0 0 0 1 0 15 1 6.835883 0 1 0 0 0 1 0 16 1 5.794425 0 0 1 0 0 1 0
Calculating
exporterFlorida * importerFlorida + exporterFlorida * importerTexas + exporterTexas * importerFlorida + exporterTexas * importerTexas
gives – not surprisingly – exactly the values inintraUS1
.So my question is, again: Why does this regression not fail, given that one variable is a linear combination of the others?
Below the complete code the reproduce the estimation:
## Generate data #### set.seed(1) states <- c("Canada", "Florida", "Texas", "Mexico") dat <- expand.grid(states, states) colnames(dat) <- c("exporter", "importer") dat[, "flow"] <- NA dat[, "dist"] <- NA dat[, "intraUS"] <- 0 for (i in 1:nrow(dat)) { dat[i, c("flow", "dist")] <- c(rnorm(1, mean = 1000, sd = 5), rnorm(1, mean = 6, sd = 2)) if (dat[i, "exporter"] %in% states[2:3] && dat[i, "importer"] %in% states[2:3]) { dat[i, "intraUS"] <- 1 } } dat$intraUS <- factor(dat$intraUS) ## Run regression - works! #### summary(lm(flow ~ dist + exporter + importer + intraUS, data = dat)) ## Show that "intraUS1" is a linear combination of the dummies. #### mmat <- data.frame(model.matrix(lm(flow ~ dist + exporter + importer + intraUS, data = dat))) cbind(mmat, test = with(mmat, exporterFlorida * importerFlorida + exporterFlorida * importerTexas + exporterTexas * importerFlorida + exporterTexas * importerTexas ))[, c("intraUS1", "test")]
Answer
exporterFlorida * importerFlorida + exporterFlorida * importerTexas + exporterTexas * importerFlorida + exporterTexas * importerTexas
This is not a linear combination of exporterFlorida
, importerFlorida
, importerTexas
and exporterTexas
. In a linear combination, the coefficients of the vectors must be constants. So something like
2*importerFlorida + 3*importerTexas - exporterFlorida - 2*exporterTexas
is a linear combination.
What you have could possibly be called a quadratic combination, but that’s stretching terminology into “I’m making stuff up” land.
Attribution
Source : Link , Question Author : CL. , Answer Author : Matthew Drury